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§1 Lecture 1.0 - Introduction to Group Theory

§1.1 Basic Axioms of Group

Definition 1.1 (Group). A group is a pair (G,∗), where ∗ is a binary operation on G, satisfying the following:

• Associativity: For each a, b, c ∈ G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c).

• Identity: There exists some element e ∈ G such that, for all g ∈ G,e ∗ g = g ∗ e = g.

• Inverses: For each element g ∈ G, there exists some h ∈ G satisfying g ∗ h = h ∗ g = e. Often, we write this
h as g−1.

Remind of basic axioms for (integer’s) addition we learned in primary school, something familiar is missing –
commutativity.

Definition 1.2 (Commutativity). For each a, b ∈ G of the group (G,∗), we have a ∗ b = b ∗ a.

Commutativity is not assumed as a group axiom. Groups that also satisfy the commutativity axiom are
known as abelian groups.

Definition 1.3 (Abelian Group). A group that satisfies the commutativity axioms is abelian, otherwise, it is
non-abelian.

Proposition 1.4

The identity element of a group (G,∗) is unique. That is, if e1 and e2 are elements of G such that, for all
g ∈ G,

e1 ∗ g = g ∗ e1 = g ∗ e2 = e2 ∗ g = g,

then in fact e1 = e2.
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Proposition 1.5

Every element g ∈ G has a unique inverse. That is, if h and h′ are elements of G such that

g ∗ h = h ∗ g = g ∗ h′ = h′ ∗ g = e,

then in fact h = h′.

Example 1.6 (Examples of groups) • (Z,+) is a group. In fact, it is an abelian group.

• (Zm,+) is a group for all m ∈ Z. It is also abelian.

• (Z, ⋅) is not a group. (Failure of inverses.)

• (Z,−) is not a group. (Failure of associativity.)

• (Z+,+) is not a group. (Failure of inverses.)

• (Z+, ⋅) is not a group. (Failure of inverses.)

• (R,+) is an abelian group.

• (R+, ⋅) is an abelian group.

§1.2 Cyclic Group

Definition 1.7 (Cyclic Group). We say that (G,∗) is a cyclic group if there exists an element g such that,
for each a ∈ G, there exists some n ∈ Z such that

a = gn

Definition 1.8 (Generator). We refer to such g in the cyclic group as a generator. Sometimes we write
G =< g >.

For example, (Z+,+) is a cyclic group with generator g = 1.

Example 1.9 (A Slightly More Interesting Example)

Take the even positive numbers 2Z, defined by

2Z = {2n ∶ n ∈ Z}

Then we have that 2Z is, with the usual addition +, a group as well.

• Associativity is trivial, since addition is associative on all of Z.

• The element 0 satisfies the identity axiom, and since 0 = 2 ⋅ 0, indeed 0 ∈ 2Z.

• If m ∈ 2Z, then m = 2n for some n ∈ Z. Then we have −m = 2 ⋅ (−n), so −m ∈ 2Z as well.

Question 1.10. Did we miss anything?

We should check that + is a binary operation on 2Z, not just on Z. That is to say, we need to make sure
that if m,k ∈ 2Z, m + k ∈ 2Z as well.

Not only is 2Z a group, it is a cyclic group generated by 2.
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Remark 1.11. Notational caveats and remarks:

• If the group (G,∗) is abelian, then instead of gn, we often write ng and for the inverse, we will also write −g
instead of g−1.

• Not infrequently, the binary operation is suppressed in the notation; instead of g ∗ h we simply write gh.

• Often when the operation ∗ is known, the group (G,∗) is simply denoted by G.

§1.3 Subgroup

Example 1.9 shows that 2Z is a group contained within Z. There is a formal definition for this kind of group
pairs.

Definition 1.12 (Subgroup). Let (G,∗) be a group, and H ⊆ G. We say that (H,∗∣H) is a subgroup of G if
the following hold:

• Closure: ∗∣H , the restriction of ∗ to H, is in fact a binary operation on H. That is, for any h, k ∈H, we
have h ∗ k ∈H as well.

• Associativity

• Identity: there exists an identity element in H.

• Inverses: for each h ∈H, we have that h−1 ∈H. We often write this as H ≤ G.

Definition 1.13 (Proper Subgroup). If (H,∗∣H) is a subgroup of (G,∗) and H is not the entire set G, then
we say that H is a proper subgroup of G.

Example 1.14

As shown, (2Z,+) is therefore a proper subgroup of (Z,+).

Example 1.15

For every group G, {e} which is the set of identity elements of G is always a subgroup of G. It is often
referred to as the trivial subgroup.

§1.4 Group Homomorphism and Isomorphism

Definition 1.16 (Homomorphism). Let A1 and A2 be two abelian groups, and let φ ∶ A1 → A2 be a function
sending elements of A1 to those of A2. We say that φ is a group homomorphism from A1 to A2 if, for all
a, b ∈ A1,

φ(a + b) = φ(a) + φ(b)

Remark 1.17 (Difference on Notations). Actually, we can define group homomorphisms in general for groups G1,G2,
even if the groups are not necessarily abelian. The definition is basically the same (note that the order matters):

φ(ab) = φ(a)φ(b)
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Example 1.18

Define a function φ ∶ Z→ Z by
φ(n) = 2n.

Verify φ is a group homomorphism.

Proof. This is trivial. For every two elements a, b in Z, we have

LHS = φ(a + b)

= 2(a + b)

= 2a + 2b

= φ(a) + φ(b)

= RHS

Definition 1.19 (kernel). Let φ ∶ A→ B be a homomorphism of abelian groups. We define the kernel kerφ as
the collection of elements of A sent by φ to the identity of B. That is,

kerφ = {a ∈ A ∶ φ(a) = eB}

Proposition 1.20

Let φ ∶ A→ B be a group homomorphism. Then kerφ is a subgroup of A.

From the definition of kernel, we can deduce some trivial properties.

• φ(eA) = eB

• φ(a−1) = φ(a)−1

Proposition 1.21

φ(eA) = eB.

Proof. Applying the identity of A and B on a and φ(a), we have

φ(a) = φ(eA ⋅ a) = eB ⋅ φ(a)

and according to the homomorphism, φ(eA ⋅ a) = φ(eA) ⋅ φ(a), therefore,

φ(eA) = eB

Proposition 1.22

φ(a−1) = φ(a)−1.

Proof. This proof is left as an exercise for reader. ∎

We also define the image of φ.

Definition 1.23. The image of φ is defined by

imφ = {φ(a) ∶ a ∈ A}

Some people use φ(A) as well for image.
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Proposition 1.24

Let φ ∶ A→ B be a group homomorphism. Then imφ is a subgroup of B.

Remark 1.25 (A Good Way to Understand kernel and Image). You definitely know the definition of function (or
more appropriately) already, we can think that φ is a function that links group A to B, where kernel means the
zeros (x for f(x) = 0) and image means the range.

Definition 1.26 (Injective). We say that φ is injective or one-to-one if, for any a1, a2 ∈ A, φ(a1) = φ(a2) if
and only if a1 = a2.

Definition 1.27 (Surjective). We say that φ is surjective or onto if, for any b ∈ B, there exists a ∈ A such
that φ(a) = b. In other words, imφ = B.

Proposition 1.28

The following statements are equivalent:

• φ is injective;

• kerφ = {eA}

This is an interesting proposition, let’s prove it!

Proof. Let’s first prove if φ ∶ A→ B is injective, then kerφ = {eA}.
Suppose the homomorphism φ ∶ A → B is injective. Then since φ is a group homomorphism, according to

Proposition 1.21, we have φ(eA) = eB. If we say a ∈ A and a ∈ kerφ, then we have φ(a) = eB = φ(eA). Since
φ ∶ A→ B is injective, we must have a = eA.
Therefore, φ is injective Ô⇒ kerφ = {eA}.

Then prove if kerφ = {eA}, φ is injective.
We suppose that there exist a1 and a2 in group A such that

φ(a1) = φ(a2),

then we have

φ(a1a
−1
2 ) = φ(a1)φ(a

−1
2 ) according to the definition of group homomorphism

= φ(a1)φ(a2)
−1 according to Proposition 1.22

= φ(a1)φ(a1)
−1

= eB

Thus the element a1a
−1
2 = eA, implying a1 = a2 and φ is injective.

Definition 1.29 (Isomorphism). A homomorphism that is both injective and surjective is referred to as an
isomorphism.
When two groups are isomorphic, in a sense they are the same.
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Example 1.30 (Chinese Remainder Theorem)

Let m and n be coprime positive integers, the Chinese Remainder Theorem tells us that the system of
congruences

x ≡ a (mod m)

x ≡ b (mod n)

has a unique solution mod mn. This implies the map Lm,n ∶ Z/mZ ×Z/nZ→ Z/mnZ by

L(a, b) = x

where x is the unique solution.
Here Lm,n is an isomorphism of groups.
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Special thanks to Paco for his superb dorm lectures on group theory that covered basic group theory
knowledge and led me on the journey of learning Abstract Algebra.
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