## Lagrange's Four-Square Theorem and Generalization

## Brandon Chan, Stephanie Yao

**Ross Mathematics Program** 

July 24, 2024

Chan, Yao (Ross Mathematics Program)

Celebration 3

July 2024





- 3 Sum of Three Triangular Number Theorem
- Generalization: Fermat's n-gonal Number Theorem

## Theorem

The theorem, given any integer n, there exists four numbers  $a, b, c, d \in \mathbb{Z}$ 

$$a^2 + b^2 + c^2 + d^2 = n$$

э

If p is an odd prime, then  $a^2 + b^2 + 1 = kp$  for some integers a, b, k with 0 < k < p.

< □ > < 同 > < 三</p>

æ

If p is an odd prime, then  $a^2 + b^2 + 1 = kp$  for some integers a, b, k with 0 < k < p.

Let p = 2n + 1. We first take a set A; = { $a^2 \mid 0 \le a \le n$ }, and  $B := \{ -b^2 - 1 \mid 0 \le b \le n \}.$ 

э

If p is an odd prime, then  $a^2 + b^2 + 1 = kp$  for some integers a, b, k with 0 < k < p.

Let p = 2n + 1. We first take a set A; =  $\{a^2 \mid 0 \le a \le n\}$ , and  $B := \{-b^2 - 1 \mid 0 \le b \le n\}$ .

In particular, we realize that  $|A \cup B| = 2n + 2$ . Therefore, there exists two elements  $x, y \in A \cup B$  such that  $x \equiv y \pmod{p}$ . In particular, x and y both most come from A and B separately. Thus, the lemma is proved.

For any integers a, b, c, d, w, x, y, z,

$$(a^{2} + b^{2} + c^{2} + d^{2})(w^{2} + x^{2} + y^{2} + z^{2})$$
  
=(aw + bx + cy + dz)<sup>2</sup> + (ax - bw - cz + dy)<sup>2</sup>  
+ (ay + bz - cw - dx)<sup>2</sup> + (az - by + cx - dw)<sup>2</sup>.

Image: A match a ma

æ

For any integers a, b, c, d, w, x, y, z,

$$(a^{2} + b^{2} + c^{2} + d^{2})(w^{2} + x^{2} + y^{2} + z^{2})$$
  
=(aw + bx + cy + dz)<sup>2</sup> + (ax - bw - cz + dy)<sup>2</sup>  
+ (ay + bz - cw - dx)<sup>2</sup> + (az - by + cx - dw)<sup>2</sup>.

We are not going to give the gory details here for the algebra. However, one might note that this is the norm for the quaternions, also known as  $\mathbb{H}$ .

Assume that 2m is the sum of two squares  $x^2 + y^2$ . Then, m is the sum of two squares.

э

Assume that 2m is the sum of two squares  $x^2 + y^2$ . Then, m is the sum of two squares.

We note that both x, y are of the same parity. Therefore, we can take  $\left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2}\right)^2$ .

### Theorem

The theorem, given any integer n, there exists four numbers  $a, b, c, d \in \mathbb{Z}$ 

$$a^2 + b^2 + c^2 + d^2 = n$$

Because of lemma 2, it suffices to prove the statement for all primes p, instead of a general number n. We also know that because of Lemma 1, we have

$$a^2 + b^2 + 1^2 + 0^2 = mp$$

for some numbers 0 < m < p.

Then, the idea on trying to get k = 1, so that we can prove the theorem. To do this, we show that there is a number 0 < n < m, such that there exists  $a, b, c, d \in \mathbb{Z}$ , such that

$$a^2+b^2+c^2+d^2=np$$

We define the numbers as follows:

 $w \equiv a \pmod{m}$   $x \equiv b \pmod{m}$   $y \equiv c \pmod{m}$  $z \equiv d \pmod{m}$ 

for  $\frac{-m}{2} < w, x, y, z < \frac{m}{2}$ . Our main claim will be that the four integers obtained from lemma 1's  $\frac{(a^2+b^2+c^2+d^2)(w^2+x^2+y^2+z^2)}{m}$  are the numbers that have this property.

We note the fact that  $w^2 + x^2 + y^2 + z^2 \equiv 0 \pmod{m}$  and  $w^2 + x^2 + y^2 + z^2 < 4\frac{m^2}{4} = m^2$ , because of modulo reasons. Therefore,  $w^2 + x^2 + y^2 + z^2 = mn$  for some integer  $0 \le n < m$ . In particular, we realize that  $n \ne 0$ , because this would mean that  $m \mid a, b, c, d$ , which shows that  $a^2 + b^2 + c^2 + d^2$  can be represented as  $m^2q = mp$ , showing that  $m \mid p$ , implying that m = 1, since 0 < m < p. We notice that  $(a^2 + b^2 + c^2 + d^2)(w^2 + x^2 + y^2 + z^2) = pm^2n$ . Additionally, in the notation of Lemma 1, we have that

$$(aw + bx + cy + dz) \equiv (ax - bw - cz + dy)$$
$$\equiv (ay + bz - cw - dx)$$
$$\equiv (az - by + cx - dw) \pmod{m}$$

We notice that  $(a^2 + b^2 + c^2 + d^2)(w^2 + x^2 + y^2 + z^2) = pm^2n$ . Additionally, in the notation of Lemma 1, we have that

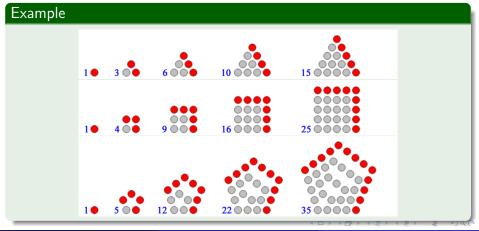
$$(aw + bx + cy + dz) \equiv (ax - bw - cz + dy)$$
$$\equiv (ay + bz - cw - dx)$$
$$\equiv (az - by + cx - dw) \pmod{m}$$

Thus, we can divide the terms by m, and get four integers that when squared and then summed, add up to pn. Hence, repeating this argument, yields the claim.

# Brief Intro

## Definition

A polygonal number is a number that counts dots arranged in the shape of a regular polygon.



Celebration 3

We only state the theorem.

Theorem

Every integer can be represented as the sum of at most n n-gonal numbers.

- Fermat Polygonal Number Theorem
- Proof of Lagraunge's Four Square Theorem
- MELVYN B. NATHANSON, A SHORT PROOF OF CAUCHY'S POLYGONAL NUMBER THEOREM

14/14